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A STOCHASTIC, MULTISTAGE, MULTIPRODUCT
INVESTMENT MODEL*

V. P. SREEDHARAN ND H. H. WEIN:
Abstract. This paper presents a model for an n-stage multiproduct investment

program. The problem of finding an "optimal" investment program is of great in-
terest in industry. Given a probabilistic estimate of future product(s) demand, we
seek an optimum within a set of alternatives open to us. By the optimum we mean the
minimum-minimorum of the total expected costs. The minimal cost and precise
timing of the n stages are obtained by solving a set of functional equations using a
combination of the recursive technique of dynamic programming and numerical
methods.

1. Introduction. In this paper we discuss the formulation, analysis and
solution of a mathematical model intended for use in selecting among
alternative multistage investment programs. Such selection problems fre-
quently confront both state planning agencies and private companies.
The chosen program is to be that which is ]east costly (or most profitable)
in. the "present worth" sense.
The investments are to be used to provide capcity to meet future de-

mands for one or more products of a given class. There may be significant
penalties for either an excess or a deficit of capacity, the latter being met
by "imports." Demands are regarded as "known" only in the form of
probability distributions, so that it is really the expected value of dis-
counted cost which is to be minimized.
The alternative programs will in general differ in their individual product

capacities, investment requirements and operating costs. Some of them may
involve the production of only a subset of the class of products being con-
sidered. Each ].ternative, however, must be capable of being "staged"
over time. That is, acilities and capacity can be built up gradually (the
mode], assumes discrete steps). All the "stages" of an alternative are re-
quired to be compatible; i.e., nonoperational combinations of stages are
excluded.
The sequential stages of each M.ternative may be thought of as the

sequential expansion of a multiproduct facility. In comparing alternatives
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one should associate, to each, that precise timing of its stages (i.e., the
times when the stages should become operational) which minimizes the
mean discounted cost. Thus the "best" alternative is selected as a mini-
mum-minimorum.
Our effort is therefore focussed on the problem of determining the optimal

time-phasing, for some one glternative which is completely specified
except for this phasing. A mathematical model for this problem is developed
in 2. Section 3 describes a solution method using the recursive technique
of dynamic programming.
The solution has been appSed to the selection of the optimal phasing

over a fifteen-year planning period for twenty-seven different process
alternatives for producing flat steel products (four in number). This was
done for a South American country in which the steel facilities are state
owned. The minimum-minimorum was determined under a variety of
alternative assumptions on parameters such as interest rate, import prices,
varying growth rates and assumed errors in these.
As it turned out the processes showed significant phasing sensitivity

depending upon parameter values (eight sets of parameter values were
tested). But under the four parameter alternatives considered most 5kely
to prevail the minimum-minimorum was stable. Because of the lengthiness
of the descriptive empirical material nd results we do noC include them
in this paper. They are intended to be published elsewhere.

2. Formulation of model. The
0. We use the notation

"present" will as usual be denoted by

T planning horizon,

n number of stages.

The variables of our minimization problem are denoted by

(1) 0 <_ t <= t. <-

where t is the time at which the ith stage begins. Note that the possible
equalities in 1 admit simultaneous initiation of several stages.
For compactness, we set t (t, t) and let A(n, T) denote that

portion of %-space defined by (1). The minimization problem consists of
determining

f(n, T) min/F(n)(% ;T)[% A(n, T)},

and finding t* at which the minimum is attained. We proceed to describe
the explicit form of the function F().
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The alternative whose timing is under study involves the quantities

K amount of capital invested at the beginning of the ith stage,

i.e., at t.
Note that some of the K nay be zero. With the notations

a discounting rate,

/ salvage rate,

we see theft at time T the worth of the facilities introduced for the ith stage
is K exp -(T t)}, which discounted back to t becomes

Kexp {-(B + a)(T-

Hence effective net eapitM expended at t is

K,- K, exp {-( + a)(T- t,)},

whose contribution to the present worth function F((t T) is

K, exp at,) K, exp ( + a) T + fit,}.

Thus one summand of F(n) (t. T) is

(3) K,[exp (-at,) exp {-( + a)T+ fit,}].
i=1

The different products will be indexed j 1, p, where p denotes the
total number of products. The investment policy alternative involves
certain quantities

pit capacity for jth product in ith stage.

The existence of the facilities involves certain fixed costs

di unit (of capacity) cost associated with jth product in ith stage,

while the operation of the facilities brings in variable costs

cir. unit (of output) cost for jth product in ith stage.

The demand functions

d.(t) demand rate for jth product at time

are assumed to be exogeneous. Actual output rate is given by

(4) rii(t) rain (pij di(t) ), Its, t/l],
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with t.+l T. In other words, there is no "stockpiling." Note that some
p may be zero; in fact, we might for some j have all pj O.
The aforementioned costs lead to another summand of F(n)(t T),

namely,

[c,ij r(t) -t- di pi} cxp (-at) dt
i=l j=l

where the expectation operator E is required because the integrands
r. involve the stochastic demand functions d..
The terms dipj in (5) impose a penalty for excess capacity. The re-

maining suxnmand of F(n) expresses th.e cost of the "imports" (for a govern-
ment actual imports, and for a private firm items purchased but not neces-
sarily from abroad) required to compensate for inadequate capacity. Let

M. delivered "import" unit price of jth product.

The total discounted expenditure for imports is then given by

M d(t) exp (-at) dt

ftt+l+ Mi [d.(t) r.(t)] exp (-at) dt.
i=1 ’=1

For underdeveloped countries, however, imports may be viewed as having
"extra costs," dictated by the amount of foreign exchange available, na-
tional aspirations, etc. These "social costs" of imports are generally viewed
as rising nonlinearly with the size of the import. We incorporate this by
introducing a square term. The coefficients t and of the penalty function
(as well as the import prices M.) could be treated as time-varying without
any conceptual difficulties, but this would require un_attainably complete
knowledge of the future economy in the large, and much more cumbersome
computations. Thus the final term of F()(t T) reads

E M d(t) + k d(t)} exp (-at) dt

(6) + t+l {(di(t) r(t))
i=1

To summarize, the minimization problem in (2) takes the explicit form

f(n, T) mi. IF(n)(t ’) t (n, T)}
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t, ea,.’)min {=, K[exp (-ati) exp {--(5 -k a)T q-

(E(7) + E M {.d(t) + hd=(t)} exp (--at) dt
j=l

ti+l+ c r,(t) + d

8. alysis. One now recognizes he possibility of applying some re-
cursive eehnique such as ghag in Bellman [1]. Wigh his purpose in mind,
and regarding T as fixed, we define G( go be hag par of F( arising from
ghe ingerval [0, g). Thus, for 0 N N T and t_ ( 1, ), leg

--1

a((t-.1 ;) K{exp (-) exp (-( + )T + )}

E (j=l [li=l {cij rij(t) dij

(8) + Mi[(d(t) r(t)) + X(d(t) ri(t))]} exp (-t) dt

md set

(9) g(n, r) min {G(’(t_.. r) t- < k(n 1., r)}.

It follows that

f(n, T) min g(n, t) + K.,[exp (-at) exp (-(5 + a)T + fit)]

(10) +E {cr(s) + d

+ M[(d(,) r(s)) + (d(s) r(,))]}

exp (-as)

Thus the evaluation of f(n, T) is reduced to one-dimensional minimiza-
tion problemif we have n etfieient method for elculating the values of
g(n, r). 8ueh a method, however, can be arrived at by observing that the
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tunction G() obeys the recursion

G() (t- t) G(-) (t_. t_)

+ K-I {exp (-at,_) exp (-

11 + E c,-,r-,(t) +

+ M[,(g(t) r-,(t))

+ h(g(t) r-,(t)):]} exp (-at)dt[
This in turn gives us the functional equation

g(n, v) min g(n 1, t)

+ K- [exp (-at) exp (-(fl + a)T+ fit)]

(12) + E c.-,r.-,(s) + d,-,p-,
j=l

+ M[,(d(s) r-,(s))

+ X(d(s)- r.-,(s)):]} exp (-as)ds]}
for n > 1. The "boundary conditio" corresponding to n 1 is

Thus ghe ealeulagion of f(, T) can be carried ou as a sequence of one-
dimensional minimiagions.

Furgher progress requires specifying ghe funegional forms of ghe gemporal
and sgoehasgie variagions of ghe demands d. For inigial simplieigy, we
assume posigive eonsgang growgh rages bi, which are ghemselves random
variables. The more realisgie noneonsgang ease is considered subsequengly.
Thus

This analytic form allows us go define (b) uniquely by ghe speeifieagion

which implies thag

(15) gi(bi) bi- log
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We may abbreviate

(16) t,(b) t,(b),

since it is the function ti that we are defining. It follows from (4) that

(17) d(s) ri(s) O, s [h rain {t.(b),

(18) r,i( s) pi s [max

With the aid of these, one verifies that the integral occurring in (12) can
be rewritten as

ds ft
t

ft {.." cxp --as cj s) cxp -asCj( ds

-t-- diip,ij exp (-as) ds + pii(ci + M(Xpii
(1O)

exp (-as) ds + Mi(# 2Xm.) d(s) exp (-as) ds

+ XM- d.2 (s) exp as) ds,

where

(20) t’ t(b) max {t, rain (h(b), r)}.

With the aid of (14) the integrals in (19) can of course be evaluated
explicitly.

It is convenient to write

y

A(x, y, 0) exp {(0 a)s} ds
(21)

(a 0)= {exp [(0 a)z] exp [(0 )]I.
Then the right-hand side of (19) becomes

--1caA(t, t’, b) -t- dimia [exp (-at) exp (-at)]
--1(22) -t- m[ci -t- M(Xm- #)][exp (-at’) exp (-at)]

-t- M(u 2kpi)aA(t’, r, b) -Jr- XMaZA(t’, r, 2b).

The expectation operator E (cf. (12)) must be taken into account. No
explicit assumption about the probability distributions of (b, --., b)
has yet been made. For computational facility we shall assume that the
distributions P(b) of the random variables b- are statistically independent.

The proper indeterminate form is assumed for c 0.
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Hence (12) takes the explicit form

g(i + 1, r) o<_t<,min fg(i, t) + K [exp (-at)

exp (-( -t- )T -t- t)] nt-

(23)

A(t, t’, b)P(b) db

-1+ dipa- exp at) exp at) -t- a p1{ ci

+ M(Xm. .)} {exp (-at’) exp (-ar)}P(b) db

rain (i, t, r),

say, where t’ was defined in (20)
To solve the phasing problem it is necessary to keep trck of the points

where the minimum of (i, t, r) occurs. Let t* be such that

(24) g(i + 1, r) (i, t*, ),
(25) t* t*(i, ).
Then in the n-stage problem, once T nd n are given, t*(n, T) is the timing
of the nth stage and inductively the timing of the (n 1)th stage is
t*(n 1, t*(n, T)), and so on. Note that, though we explicitly defined
t*(i, ) only for i < n, the obvious interpretation of t*(n, T) is used in
connection with (10).

All rel problems for which the preceding analysis would be useful rc
characterized by many investment alternatives nd frequently by n.on-
constnt-growth-rtes. Numerical solutions to such problems re feasible
only through digital computer, such s the CDC 3600 t Michigan State
University, which was awilble to us. Though certain simplifications will
result by ssuming some reasonably simple forms for P(b), still, the compu-
ttions are much too long for desk clcultor--let alone the nonconstant-
growth-mte-cse.
We mke the traditional but not unrealistic assumption that P’s are

normfl distributi()ns. Explicitly,

1 l(b_ )/(26) Pi(b) exp : j 1., p.

In real situations the problem of the estimation of the parameters and ai is
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To evaluate the infinite integrals in (23) we make use of the well-known
Gauss-Hermite quadrature formula (see [2]) which states that

(27) foo exp (--x)g(x) dx Hg(xk) +
where Hk are the Gauss-Hermite weights, x the corresponding abscissas
and em the error term. Using (26),

P(b)g(b) db .V/--- exp (-)g( --l- /-zx) dx

(28)

where

(30) w Hk//r.
An appraisal of e, can be made by using a formula [2, p. 129], namely,

e,
2,(2m)]

In the present case a better estimate couhi be obtained by applying this

formula to gr(x) cxp (-x2) (ix, where gu is the truncation of g in

the interval [-N, N], and then making another error estimate for this
truncation error using properties of exp (-x). Since the formula (27) is

of considerable importance. When there is lack of significant data to produce reasona-
ble econometric forecasts, the possibility of estimating an optimistic, pessimistic
and realistic rate of growth and then using a beta-distribution in place of the normal
is not excluded. This procedure has been applied successfully in analogous situations
in PERT. The attendant mathematical ramifications are evident. We have to replace
the Gauss-Hermite weights and abscissas by appropriate Jacobi weights and abscis-
sas. Of course, now the weights and abscissas themselves have to be computed by a
computer routine each time since the associated Jaeobi polynomials, and hence their
roots, depend in a more complex way on the parameters of the beta-distribution than
the Hermite polynomials on the parameters of the Gaussian distribution. A general
computer program of this type would have the virtue of including such distributions
as triangular and others also.
We shall present the normal case since all the remaining calculations but for the

above noted initial difference are identical. Moreover, this difficulty lust alluded to
is somewhat routine.
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exact for polynomials of degree _-< 2m 1 and since the function g is a
combination of various exponentials we did not go through this procedure.
Some remarks are also in order regarding the possibility of s.k becoming

very negative which would be the case if we use large m. This occurs for
large values of m, but in view of (17) and (18), the integrals in (19) would
still be physically meaningful--provided the stochastic variations were
estimated properly. The reason for this is that large negative values would
occur with a low probability which would be taken into account by the
quadrature formula. In our study referred to earlier, the values of . and
the chosen value of m were such that s.k => 0, for all j and l.

Thus, finally, (23) becomes

(31)

g(i+ 1, r) min{g(i,t)
O<:t <_r

where

q- K[exp (-at) exp (-(fl + a)T+ fit)]
p p

-t- a- exp (--at)
j=l i=1

nu cj q- Mj(),pi /)} q- w[cjaA(t, t,
j’=l

+ a p{cy + M(hp1 tt)} exp (--at’)
q- Ma(t 2,p.i)h(t’, r, sj)

+ XMja2A(t’, r, 2s.)]},

(32) t’= t(s),
and the formula (20) is used in its computation.
We my now discretize the problem in (31) in n obvious way by choos-

ing a fine enough grid for the planning horizon [0, T]. The number of sub-
divisions of [0, T] is mostly influenced by the physical nature of the prob-
lem. That is, very fine subdivision resulting in possible additions of
fcilities t quick interwls my not be realizable. In fct, the subdivisions
hd to be spaced six months prt in our study. Thus it seems pproprite
to view the grid-size s constraint. Equations (31), (13), (10) and other
related equations re now in a form suitable for trgnslgtion into an alge-
brfic bmguge for use on lrge-scle digital computer.
In the nonconstnt-growth-rte ctse, we ssume tht the demand rtes

for ech of the p products cn be pproxinted in the interwls [0, T],
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ITs, T.] and ITs., f/’] by

a-exp(bjl), 0 < < T

a. exp [b{T + e(t- T)}], T _-< _-< T,
(33) d(t, b)

TtT.
Here the demand (a) for each product at 0 is assumed to be known
with certainty, while b are stochastic variables. The interpretations of
(10), (12) and (13) remain unaltered, but it is necessary to replace the
simple formula (15). With this in view we define

(i) t(1) b-i(b) log
2) -i(ob) o (p/a) (i O)T/O

(34) (i )T,]/,

(Ob)- log (p/a) (i )T/ ( )/
(2),/ (/ i)T.

The pproprite replacement of (15) defining t(b) is then given by the
following rule"

()if > =< T then (b)

(35)
if’ < t} and T < ),, () =< T, then t(b) ;

() then t(b) T... < t, < t T <,

Equations (17), (18), (19) and (20) still apply. But (19) does not simplify
to (22). To get analogous expressions we put

a exp b(1 0)T}, bO,
and

(36) exp (0 0) T}, 5 b.
Let t’ be defined via (35) and (20). Then the factor of c in the first

summand of (22) will be replaced by"

ah(t, t, b) if 0 t’ T,

[acA(t, T, b) + h(Ta ,t,)] ifO t T t’ J,

aA(t, t, ) if Ta < < t’ < T
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[ah(t, T1, b) + 5A( TI T. b) + d.A(7., t, b)]

if0 =< t_< T < /_-<

t’ $)] ifT < < T <[aA(t, T.,5) + A( T,,

dA(t, t, ) if T =< __<

The two middle terms in (22) remain unaltered, but the last two terms
must be replaced in a fashion similar to the above. In fact, if we change
to t’ and to r wherever they appear in this paragraph we get the

proprite multiplier of M-( 2pi.). To obtain the multiplier of M.
(the last summand in (22)), we need to replace b by 2b, a. by a, 5 by
25, 5 by 5, by 2 and d. by d in the multiplier we have just obtained
for the next to the last term of (22)--of course, we do not alter the defini-
tion of r. With these modifications, but using the same P(b)’s, we arrive
at a modified version of (31), the intermediate steps and reasoning being
the same as before.

This is now ready for translation into a computer program. Though our
actual computer program prints much further information which is tradi-
tionally sought in accounting and economic comparisons (consistent with
our definition of optimality), we have suppressed these details since they
are neither mathematically interesting nor directly related to our definition
of optimality. The program written in Fortran 3600 for the nonconstant-
growth-rate case will be published in another paper.
The authors are considering generalizations of the present model where

stochastic demands of intermediate products are permitted. The solution
of this problem, we believe, would be of considerable value in the optimal
ivestment programming of whole sets of industries related in. an input-
output fashion.
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